3D angle gathers from wave-equation extended images
نویسنده
چکیده
We present a method to construct 3D angle gathers from extended images obtained using wave-equation migration. The method relies on an analytic formula that associates the reflection and azimuth angle to reflection kinematics in the images. The decomposition is able to render the angle gathers that characterize the reflectivity as a function of both reflection and azimuth angle simultaneously. Since the images are constructed from accurate wave-equation-based imaging algorithm, the method is robust to characterize angle information in presence of noisy data and complex subsurface geologic environments. The application of the method on a North Sea 3D OBC field dataset illustrates that 3D angle gathers obtained from our method is effective to extract reflection and azimuth angle information.
منابع مشابه
Comparison of angle decomposition methods for wave-equation migration
Angle domain common image gathers offer advantages for subsurface image analysis in complex media. We compare two angle decomposition methods using extended images and wave propagation directions based on Poynting vectors of the source and receiver wavefields. We evaluate the ability of each method to produce accurate and efficient angle gathers for wave-equation migration in the presence of mu...
متن کامل3D angle decomposition for elastic reverse time migration
We propose 3D angle decomposition methods from elastic reverse time migration using timeand space-lag common image point gathers, time-lag common image gathers, and space-lag common image gathers computed by elastic wavefield migration. We compute time-lag common image gathers at multiple contiguous locations, instead of isolated positions as is commonly done with common image gathers. Then, we...
متن کاملDip-angle decomposition in relation with subsurface offset extended wave-equation migration
Our proposal provides post-migration techniques for computing angle-domain common-image gathers (CIGs) from seismic images, extended by the subsurface offset, in relation with wave-equation migration methods. In addition to the commonly used decomposition of the scattering-angles, we associate the wave-equation migration with dip-domain image gathers as well. Our methodology suggests a system o...
متن کامل3D angle gathers from reverse time migration
Common-image gathers are an important output of prestack depth migration. They provide information needed for velocity model building and amplitude and phase information for subsurface attribute interpretation. Conventionally, common-image gathers are computed using Kirchhoff migration on commonoffset/azimuth data volumes. When geologic structures are complex and strong contrasts exist in the v...
متن کامل3D image-domain wavefield tomography using time-lag extended images
Image-domain wavefield tomography is a technique that reconstructs the velocity model by extracting information from migrated images. In time-lag extended images, velocity model accuracy can be evaluated by reflection focusing error, which represents the traveltime residual in the image domain. The model is updated by minimizing an objective function similar to the one used by wave-equation tra...
متن کامل